استراتژی هوشمند زمان‌بندی وظیفه برای تعادل بار در محاسبات ابری

استراتژی هوشمند زمان‌بندی وظیفه برای تعادل بار در محاسبات ابری

Intelligent Strategy of Task Scheduling in Cloud Computing for Load Balancing

مقاله انگلیسی ۱۱ صفحه PDF ترجمه فارسی ۲۳ صفحه Word

چکیده:

محاسبات ابری نوعی از سیستم‌های موازی و توزیع شده شامل مجموعه‌ای از کامپیوترهای به هم متصل و مجازی است. با افزایش تقاضا و مزایای زیرساخت‌های محاسبات ابری، انواع مختلفی از محاسبات را می‌توان در محیط ابر اجرا کرد. یکی از مسائل اساسی در این محیط مرتبط با زمان‌بندی وظیفه است. زمان‌بندی وظیفه ابر یک مسئله‌ی بهینه‌سازی NP-سخت است، و بسیاری از الگوریتم‌های فرااکتشافی برای حل آن پیشنهاد شده است. زمانبند وظیفه خوب باید استراتژی زمان‌بندی خود را با محیط در حال تغییر و انواع وظایف وفق دهد. در این مقاله یک سیاست زمان‌بندی وظیفه ابر بر اساس الگوریتم بهینه‌سازی کلونی مورچه‌ها برای تعادل بار در مقایسه با الگوریتم‌های زمان‌بندی‌های مختلف مطرح شده است. الگوریتم مورچگان (ACO) روش جستجو بهینه‌سازی تصادفی است که برای تخصیص کارهای ورودی به ماشین های مجازی استفاده می‌شود. سهم اصلی این مقاله، تعادل بار سیستم در حال تلاش برای به حداقل رساندن makespan مجموعه وظایف داده شده است. عامل تعادل بار، مربوط به نرخ اتمام وظایف، برای نرخ اتمام کار در منابع مختلف مشابه و بهبود توانایی حفظ تعادل بار است. استراتژی زمان‌بندی پیشنهادی با استفاده از بسته ابزار Cloudsim شبیه‌سازی شده است. نتایج تجربی نشان می‌دهد که، الگوریتم MACOLB درجه نامتعادلی بین ماشین‌های مجازی موجود را کاهش و عملکرد کلی را افزایش می‌دهد.

کلمات کلیدی: محاسبات ابری, زمانبندی وظیفه, بهینه سازی کلونی مورچه, تعادل بار

Abstract: Cloud computing is a type of parallel and distributed system consisting of a collection of interconnected and virtual computers. With the increasing demand and benefits of cloud computing infrastructure, different computing can be performed on cloud environment. One of the fundamental issues in this environment is related to task scheduling. Cloud task scheduling is an NP-hard optimization problem, and many meta-heuristic algorithms have been proposed to solve it. A good task scheduler should adapt its scheduling strategy to the changing environment and the types of tasks. In this paper a cloud task scheduling policy based on ant colony optimization algorithm for load balancing compared with different scheduling algorithms has been proposed. Ant Colony Optimization (ACO) is random optimization search approach that will be used for allocating the incoming jobs to the virtual machines. The main contribution of our work is to balance the system load while trying to minimizing the makespan of a given tasks set. The load balancing factor, related to the job finishing rate, is proposed to make the job finishing rate at different resource being similar and the ability of the load balancing will be improved. The proposed scheduling strategy was simulated using Cloudsim toolkit package. Experimental results showed that, MACOLB algorithm decrease the degree of imbalancing between available virtual machines and increase the overall performance.
Keywords: Cloud computing, task scheduling, makespan, ant colony optimization, load balancing

110,000 ریال – خرید

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *